Fuel delivery
Diesel engines are also produced with two significantly different injection locations. "Direct" and "Indirect". Indirect injected engines place the injector in a pre-combustion chamber in the head which due to thermal losses generally require a "glow plug" to start and very high compression ratio. Usually in the range of 21:1 to 23:1 ratio. Direct injected engines use a generally donut shaped combustion chamber void on the top of the piston. Thermal efficiency losses are significantly lower in DI engines which facilitates a much lower compression ratio generally between 14:1 and 20:1 but most DI engines are closer to 17:1. The direct injected process is significantly more internally violent and thus requires careful design, and more robust construction. The lower compression ratio also creates challenges for emissions due to partial burn. Turbocharging is particularly suited to DI engines since the low compression ratio facilitates meaningful forced induction, and the increase in airflow allows capturing additional fuel efficiency not only from more complete combustion, but also from lowering parasitic efficiency losses when properly operated, by widening both power and efficiency curves. The violent combustion process of direct injection also creates more noise, but modern designs using "split shot" injectors or similar multi shot processes have dramatically amended this issue by firing a small charge of fuel before the main delivery which pre-charges the combustion chamber for a less abrupt and in most cases slightly cleaner burn. |