The two compressors are likewise connected in series and are in addition connected to a bypass duct. The combustion air from the air cleaner first flows through the LP compressor (diameter 56.1 mm) where it is compressed as a function of the LP turbine's operating energy input. This pre-compressed air now passes into the HP compressor (diameter 41 mm) that is coupled to the HP turbine, where it undergoes further compression - the result is a genuine two-stage turbocharging process.
Once the engine reaches a medium rev speed, the HP compressor can no longer handle the flow of air, meaning that the combustion air would heat up too much. To avoid this, the bypass duct opens to carry the combustion air past the HP compressor and directly to the intercooler for cooling. In this case, the charge-pressure control flap is completely open too, meaning that the HP turbine is no longer performing any work. This is the equivalent of single-stage turbocharging.
The benefits of this elaborate, needs-driven control of the combustion air feed with the aid of two turbochargers are improved cylinder charging (for high output), meaning abundant torque even from low rev speeds. Besides this, fuel consumption is lowered too. The upshot of this as far as the driver is concerned is harmonious driving characteristics with zero turbo lag, good torque delivery over the entire rev band, tangibly superior performance, plus better communication between engine and accelerator. |